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Electromagnetic standing wave resonances in a periodically corrugated waveguide
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Mode interaction in a periodically corrugated waveguide is studied in detail. A resonance of non-Bragg type,
an electromagnetic standing wave resonance, is predicted in the waveguide. The resonance is caused by the
interaction of modes of different space harmonics. The resonance interaction results in spectrum splitting and
in the appearance of forbidden gassop bands In this connection the waveguide spectrum takes miniband
character with densely spaced stop bands. Different spectrum features change significantly the electromagnetic
properties of the waveguidgS1063-651X98)50511-9

PACS numbes): 42.25.Bs, 84.40.Az, 42.82.Et, 42.81.Qb

There are a lot of papers devoted to the investigation ofvhere¢(x,y) may be presented by, for examplg, electric
electromagnetic wave propagation in periodic structures. Théeld component of transverse elect{tE) wave, o is the
problem is topical in many fields of physics and technology:wave frequency, and is the dielectric constant of the layer.
optics and integrated optics, lasers, holography, quantum Due to the boundary periodicity(x,y) can represented
electronics, acoustics, low-dimensional electron systems, arid the form (Floquet's theorem
many otherd1—6]. One would think that the problem has
been well studied. However, more thorough analysis of the
literature, which cannot be even partly cited in a rapid com- qo(x,y)=2 [ancogky ny) + bpsin(ky y) Jexd 1(ky
munication for a very big number of the works, shows that a n
resonance interaction of modes in periodic structures had not +ng,)x], 3
been investigated.

a The_prot_)lem was usually analyzed in the C(.)upled_Wavewherean andb,, are the Fourier coefficients, amkg,, andk,
pproximatior{ 7,8]. The above method was applied to many

cases of wave propagation in waveguide geometries with gresc%mtﬁo?entsé of;hg ;/vat\;]e vectar i . th

periodic perturbation[2—4]. The coupled-wave equation | u St')u ing Eq/ )dllr<] 0 the wave equatiofil) gives the

gives solutions near the Bragg resonan@#40], but it does relation betweenn an

not describe the interaction of modes of different space har-

monics in a frequency range located far from the Bragg reso-

nances. It happens because of initial exclusion of the inter-

action from the input equations.

In this Rapid Communication we show a solution of the gnq the boundary conditior®) impose a relation ok, and

problem in.th('e multimode approximation that allows one to.ky’n defining the allowed valuel, , and, hence, the disper-
analyze this interaction and to reveal the electromagnetigjyy, law w(K).

standing wave resonance in a periodically corrugated wave- Substitutinge (x,yo(x)) and ¢(x,d) into Eg. (2), we ob-

guide. tain the system of linear algebraic equations for coefficients

_Letus consider a corrugated waveguide made of a dielec; angb . The vanishing of the determinant of the system
tric layer that occupies the space>y>yy(x) and sand- |g54s us to finding the allowed valuks,. In general it is

wiched between metal plates gt=d and y=y,(x). The jmnassible to solve the system analytically. However, in the
bottom plate has a periodic uneven shape defined by thesca of a small amplitude of the irregulariy/d<1 and

function y(x) = & cos@)=yo(x), whereq=27/a, £ anda  ¢q<1 it is easy to obtain an analytical solution. It is not
are an amplitude and a period of the unevenness. In this CasHicult to see that the coefficients, andb,, decrease- §|n\

the problem reduces to solving the wave equation asn increases. That is why we can restrict ourselves to the
approximation of three main space harmonics with the wave

w2
& ?—(kx+nqx)2—k§'n=0, (4)

Pe P w2 numbersky andk. ;.
2 W+8 2 ¢=0 1) Expanding Eq(2) into a series with respect to the small

parameters, we obtain the following characteristic equation,
which determines the allowed valukg,,

with the boundary conditions
2

3
tan(dky) = ——Ko[ k_jcot(dk_,) + k. jcot(dk.1)]. (5)
¢(X,yo(X))=¢(x,d)=0, ) ko) = 7 kol k-1 1 1 1

In Eq. (5) and further, we omit the subsrigtin the wave
*Electronic address: vpog@ire.kharkov.ua numbersk, .

1063-651X/98/565)/5261(3)/$15.00 PRE 58 R5261 © 1998 The American Physical Society



RAPID COMMUNICATIONS

R5262 V. A. POGREBNYAK PRE 58

Equation (5) is similar to the equation describing the The value ofy,, depends on the waveguide's parametérs
phase relations for the electromagnetic wave obliquely inciand g, mode numbers,l, and varies in a wide range of

dent on a thin dielectric laydt]. positive and negative values. In this connection, the reso-
We shall solve Eq(5) by means of successive approxi- nance wave numberkim may take valueskxfpvlﬁo at
mations about¢ [11]: k0=k§,°)+ ok+--- . From Eq.(5) if Xp,— —1, in contrast to the case of the Bragg resonances,

£=0 (a smooth waveguideve have tad(go)d)=0; therefore, when kf has the fixed valuek,xi =¥g/2.
Combining Eqgs(11) and(4) yields the expression for the
pm resonant frequencyy,

(=L

p=0123... . (6)
wp=[wp+ 0g(1+xp) 12 (12
The solution(6) together with the dispersion equatitf) _
at n=0 define allowed modes in the smooth plane waveWherewg=ca/(2V) is the Bragg frequency.

guide It is easy to see from Eq12) that aty,,— —1 the reso-
nant frequency ¢, — wp), counted off from the cutoff fre-
w?>  p?m? guency of thepth mode, vanishes. Thus, we come to the
Ke=\e @z~ g7 (7)  important conclusion that the electromagnetic standing wave
resonances occur in a wide range of frequences starting with

It is well known modes of a plane waveguifd. The cutoff ~ Z€r0- _ _
frequency,wp, of each mode is defined as As one can see from E¢9), upon increasing, an alter-
nation of the resonances between gtk mode of then=0

and different modes of the= —1 orn=+1 harmonics will
wp== g (8) occur. Here we consider only positikg because ak,<0
Ve the resonance condition remains the same; onlynthe- 1
harmonic must be replaced by tlme=+1 harmonic. The
Jesonances with the=+1 space harmonic cut off &
=(q/2)[(pw/dg)®>—1]. Upon further increasingk,> kS

C pm

The next iteration gives the desired solutiék, which
describes the effect of the boundary periodicity. In spite o
its simple view the comprehensive solution of E5).takes a v then=—1 h . . ¢
lot of space. In this Rapid Communication we will be con- on’3\/| etnh— armonic rema(ljns res:{orlﬁn : dratic al
centrating on the analysis of resonance cases only, becaUBFaicegr ua(iigerz]sonances H&) reduces to the quadratic alge-
of their importance for different applications. q

In zero approximation the wave numbérs; can be writ- & (12
ten as Sk2— YRE: (F) =0, (13
p277_2
ki,= \/? ¥ 2k,q—q°. (99  which gives two rootssk(1,2),
Elm
From Egs.(9) and(5) we see that at,= = q/2 the Bragg ok(1,2)= iﬁ e (14
resonances appear as usual, due to an interference of waves
propagating in the d|rec_t|on. Moreover the co_ndltlon of _the The solution(14) describes the spectrum splitting
Bragg resonance for different modes is unique and is the
same as for an unbounded periodically inhomogeneous me- £ | w2
dium. It also has the same physical meaning as in the case of w§| =wp t5m — 2 (15)
the unbounded medium. ' T 2d p oy,
Our goal is to analyze another type of resonance which is
caused by the wave movement in talirection. It follows ~and appearance of the stop bardiis, |
from Egs.(9) and(5) that the general resonance condition is £ »?
| 7 5wp’|:w;|—w;’|:aaw—pl. (16)
ke=g. 1=123.... (10) P

The width of the pass bamlw, ;| +; between théth and
It is obvious that the formula€l0) and (6) include the con- (I 1 1)th resonances in the spectrum of fite mode may be
dition of appearance of standing wave resonances, i.e., resgérived from Eq(12). It has a simpler view for the case of a
nances between different modes of the 0 and the neigh- thick layer, xp <1,
boringn= *1 space harmonics. From Ed.0) we may find

- . 2
a resonant value; |, of the wave numbek, at which the (21+1) 7wy

resonance between tip¢h mode of then=0 space harmonic Awprir1=@p 1™ @p (qd)2Vol+ w2 (7
and thelth mode of then=+1 or n=—1 harmonics take P
place correspondingly, And, finally, in the case important for optic fibersg

> w,, We get quite simple and suitable for experimental veri-

. _q (12— p?) fication expressions for the pass and stop bands in the spec-
xpi =T (1 Xp1)s Xp= (dg)? @D rum of thepth mode,
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(214 1) 7Pwg él w; The standing wave resonances cause the miniband behavior
Aw =, Swy =7 18 of the waveguide spectrum.
pl,I+1 (qd) p,l dpr ( ) g p

Here we have studied the problem solution in the first
These equations show that the frequency spectrum of ead@pPproximation. It is clear that we can consider the resonance
waveguide’s mode takes miniband character with denseljfteraction with then=+2 space harmonics in the next ap-
spaced stop bands, sindee<wg . In connection with this, ~Proximation. Then ad_d_monal resonances will appear and
electromagnetic properties of the periodically corrugatedh€y Wwill lead to additional subdivision of the spectrum.
waveguide will change in accordance with new features oMore detailed analysis and applications to electron and
the spectrum. acoustic systems will be given in a future publication.

We would like to note that Eq¢18) give the qualitatively It is worth noting that the phenomenon under consider-
right description of the transmission speci®2,13 which  ation has some analogy with st_andlng I|ght_wave interference
were obtained, however, for optic fibers with the more com{14.1]. However, for observation of the interference, one
plex periodic perturbation of its parameters and which werénonochromatic wave is enough, while in our case the reso-
interpreted in different ways. nance appears as a result of the interference of two standing

Thus, the derived theoretical investigation shows, whileVaves.
an electromagnetic wave is traveling in the layer with a pe-
riodically uneven boundary, that resonances between differ- The author would like to express thanks to Dr. C. M. de
ent modes of various space harmonics occur in the structur&terke, who called our attention to papgtg,13.
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