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Electromagnetic standing wave resonances in a periodically corrugated waveguide
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Mode interaction in a periodically corrugated waveguide is studied in detail. A resonance of non-Bragg type,
an electromagnetic standing wave resonance, is predicted in the waveguide. The resonance is caused by the
interaction of modes of different space harmonics. The resonance interaction results in spectrum splitting and
in the appearance of forbidden gaps~stop bands!. In this connection the waveguide spectrum takes miniband
character with densely spaced stop bands. Different spectrum features change significantly the electromagnetic
properties of the waveguide.@S1063-651X~98!50511-9#

PACS number~s!: 42.25.Bs, 84.40.Az, 42.82.Et, 42.81.Qb
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There are a lot of papers devoted to the investigation
electromagnetic wave propagation in periodic structures.
problem is topical in many fields of physics and technolo
optics and integrated optics, lasers, holography, quan
electronics, acoustics, low-dimensional electron systems,
many others@1–6#. One would think that the problem ha
been well studied. However, more thorough analysis of
literature, which cannot be even partly cited in a rapid co
munication for a very big number of the works, shows tha
resonance interaction of modes in periodic structures had
been investigated.

The problem was usually analyzed in the coupled-wa
approximation@7,8#. The above method was applied to ma
cases of wave propagation in waveguide geometries wi
periodic perturbation@2–4#. The coupled-wave equatio
gives solutions near the Bragg resonances@9,10#, but it does
not describe the interaction of modes of different space h
monics in a frequency range located far from the Bragg re
nances. It happens because of initial exclusion of the in
action from the input equations.

In this Rapid Communication we show a solution of t
problem in the multimode approximation that allows one
analyze this interaction and to reveal the electromagn
standing wave resonance in a periodically corrugated wa
guide.

Let us consider a corrugated waveguide made of a die
tric layer that occupies the spaced.y.y0(x) and sand-
wiched between metal plates aty5d and y5y0(x). The
bottom plate has a periodic uneven shape defined by
function y(x)5j cos(qx)[y0(x), whereq52p/a, j and a
are an amplitude and a period of the unevenness. In this
the problem reduces to solving the wave equation

]2w

]x2 1
]2w

]y2 1«
v2

c2 w50 ~1!

with the boundary conditions

w„x,y0~x!…5w~x,d!50, ~2!
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wherew(x,y) may be presented by, for example,Ez electric
field component of transverse electric~TE! wave, v is the
wave frequency, and« is the dielectric constant of the laye

Due to the boundary periodicity,w(x,y) can represented
in the form ~Floquet’s theorem!

w~x,y!5(
n

@ancos~ky,ny!1bnsin~ky,ny!#exp@ ı~kx

1nqx!x#, ~3!

wherean andbn are the Fourier coefficients, andky,n andkx
are components of the wave vectork.

Substituting Eq.~3! into the wave equation~1! gives the
relation betweenv andk

«
v2

c2 2~kx1nqx!
22ky,n

2 50, ~4!

and the boundary conditions~2! impose a relation onkx and
ky,n defining the allowed valuesky,n and, hence, the disper
sion lawv~k!.

Substitutingw„x,y0(x)… andw(x,d) into Eq. ~2!, we ob-
tain the system of linear algebraic equations for coefficie
an andbn . The vanishing of the determinant of the syste
leads us to finding the allowed valuesky,n . In general it is
impossible to solve the system analytically. However, in
case of a small amplitude of the irregularity,j/d!1 and
jq!1, it is easy to obtain an analytical solution. It is n
difficult to see that the coefficientsan andbn decrease;j unu

asn increases. That is why we can restrict ourselves to
approximation of three main space harmonics with the w
numbersk0 andk61 .

Expanding Eq.~2! into a series with respect to the sma
parameters, we obtain the following characteristic equat
which determines the allowed valuesky,0

tan~dk0!5
j2

4
k0@k21cot~dk21!1k11cot~dk11!#. ~5!

In Eq. ~5! and further, we omit the subsripty in the wave
numbersky,n.
R5261 © 1998 The American Physical Society
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Equation ~5! is similar to the equation describing th
phase relations for the electromagnetic wave obliquely in
dent on a thin dielectric layer@1#.

We shall solve Eq.~5! by means of successive approx
mations aboutj @11#: k05k0

(0)1dk1¯ . From Eq. ~5! if
j50 ~a smooth waveguide! we have tan(k0

(0)d)50; therefore,

k0
~0!5

pp

d
, p50,1,2,3, . . . . ~6!

The solution~6! together with the dispersion equation~4!
at n50 define allowed modes in the smooth plane wa
guide

kx5A«
v2

c2 2
p2p2

d2 . ~7!

It is well known modes of a plane waveguide@2#. The cutoff
frequency,vp , of each mode is defined as

vp5
c

A«

pp

d
. ~8!

The next iteration gives the desired solutiondk, which
describes the effect of the boundary periodicity. In spite
its simple view the comprehensive solution of Eq.~5! takes a
lot of space. In this Rapid Communication we will be co
centrating on the analysis of resonance cases only, bec
of their importance for different applications.

In zero approximation the wave numbersk61 can be writ-
ten as

k615Ap2p2

d2 72kxq2q2. ~9!

From Eqs.~9! and~5! we see that atkx56q/2 the Bragg
resonances appear as usual, due to an interference of w
propagating in thex direction. Moreover the condition of th
Bragg resonance for different modes is unique and is
same as for an unbounded periodically inhomogeneous
dium. It also has the same physical meaning as in the cas
the unbounded medium.

Our goal is to analyze another type of resonance whic
caused by the wave movement in they direction. It follows
from Eqs.~9! and~5! that the general resonance condition

k615
lp

d
, l 51,2,3, . . . . ~10!

It is obvious that the formulas~10! and ~6! include the con-
dition of appearance of standing wave resonances, i.e., r
nances between different modes of then50 and the neigh-
boringn561 space harmonics. From Eq.~10! we may find
a resonant value,kx,p,l

6 , of the wave numberkx at which the
resonance between thepth mode of then50 space harmonic
and thel th mode of then511 or n521 harmonics take
place correspondingly,

kx,p,l
6 57

q

2
~11xp,l !, xp,l5

~ l 22p2!p2

~dq!2 . ~11!
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The value ofxp,l depends on the waveguide’s parametersd
and q, mode numbersp,l , and varies in a wide range o
positive and negative values. In this connection, the re
nance wave numberskx,p,l

6 may take valueskx,p,l
6 →0 at

xp,l→21, in contrast to the case of the Bragg resonanc
whenkx

6 has the fixed valueskx
657q/2.

Combining Eqs.~11! and~4! yields the expression for the
resonant frequencyvp,l ,

vp,l5@vp
21vB

2~11xp,l !
2#1/2, ~12!

wherevB5cq/(2A«) is the Bragg frequency.
It is easy to see from Eq.~12! that atxp,l→21 the reso-

nant frequency (vp,l2vp), counted off from the cutoff fre-
quency of thepth mode, vanishes. Thus, we come to t
important conclusion that the electromagnetic standing w
resonances occur in a wide range of frequences starting
zero.

As one can see from Eq.~9!, upon increasingkx an alter-
nation of the resonances between thepth mode of then50
and different modes of then521 or n511 harmonics will
occur. Here we consider only positivekx because atkx,0
the resonance condition remains the same; only then521
harmonic must be replaced by then511 harmonic. The
resonances with then511 space harmonic cut off atkx

c

5(q/2)@(pp/dq)221#. Upon further increasingkx.kx
c

only then521 harmonic remains resonant.
Near the resonances Eq.~5! reduces to the quadratic alge

braic equation

dk22
j2

4d2 S lp

d D 2

50, ~13!

which gives two rootsdk(1,2),

dk~1,2!56
j

2d

lp

d
. ~14!

The solution~14! describes the spectrum splitting

vp,l
6 5vp,l6

j

2d

l

p

vp
2

vp,l
, ~15!

and appearance of the stop bandsdvp,l

dvp,l5vp,l
1 2vp,l

2 5
j

d

l

p

vp
2

vp,l
. ~16!

The width of the pass bandDvp,l ,l 11 between thel th and
( l 11)th resonances in the spectrum of thepth mode may be
derived from Eq.~12!. It has a simpler view for the case of
thick layer,xp,l!1,

Dvp,l ,l 115vp,l 112vp,l5
~2l 11!p2vB

2

~qd!2AvB
21vp

2
. ~17!

And, finally, in the case important for optic fibers,vB
@vp, we get quite simple and suitable for experimental ve
fication expressions for the pass and stop bands in the s
trum of thepth mode,
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Dvp,l ,l 115
~2l 11!p2vB

~qd!2 , dvp,l5
j lvp

2

dpvB
. ~18!

These equations show that the frequency spectrum of e
waveguide’s mode takes miniband character with dens
spaced stop bands, sinceDv!vB . In connection with this,
electromagnetic properties of the periodically corruga
waveguide will change in accordance with new features
the spectrum.

We would like to note that Eqs.~18! give the qualitatively
right description of the transmission spectra@12,13# which
were obtained, however, for optic fibers with the more co
plex periodic perturbation of its parameters and which w
interpreted in different ways.

Thus, the derived theoretical investigation shows, wh
an electromagnetic wave is traveling in the layer with a
riodically uneven boundary, that resonances between dif
ent modes of various space harmonics occur in the struc
ch
ly

d
f

-
e

e
-
r-
re.

The standing wave resonances cause the miniband beh
of the waveguide spectrum.

Here we have studied the problem solution in the fi
approximation. It is clear that we can consider the resona
interaction with then562 space harmonics in the next a
proximation. Then additional resonances will appear a
they will lead to additional subdivision of the spectrum
More detailed analysis and applications to electron a
acoustic systems will be given in a future publication.

It is worth noting that the phenomenon under consid
ation has some analogy with standing light wave interfere
@14,1#. However, for observation of the interference, o
monochromatic wave is enough, while in our case the re
nance appears as a result of the interference of two stan
waves.

The author would like to express thanks to Dr. C. M.
Sterke, who called our attention to papers@12,13#.
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